EE105 Microelectronic Devices and Circuits

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

One-Port Models (EECS 16A)

• A terminal pair across which a voltage and associated current are defined

Small-Signal Two-Port Models

- We assume that input port is linear and that the amplifier is *unilateral*:
 - Output depends on input
 - But input is independent of output.
- Output port: depends linearly on the current and voltage at the input and output ports
- Unilateral assumption is good as long as "overlap" capacitance is small (MOS)

Two-Port Small-Signal Amplifiers

Two-Port Small-Signal Amplifiers

Input Impedance Zin

 Looks like a Thevenin resistance measurement, but note that the output port has the load resistance attached

Output Impedance Zout

 Looks like a Thevenin resistance measurement, but note that the input port has the source resistance attached

Single-Stage Amplifier Types

Common Gate (CG) Amplifier

Common Gate AC Model

Common Gate Small Signal

CG as a Current Amplifier: Find A_i

CG Input Resistance

Approximations...

· We have this messy result

• But we don't need that much precision. Let's start approximating:

$$g_m \gg \frac{1}{r_o} \qquad R_D \parallel R_L \approx R_L \qquad \frac{R_L}{r_o} \approx 0$$
$$R_{in} = \frac{1}{g_m}$$

CG Output Resistance

CG Output Resistance

Substituting $v_s = i_t R_s$

$$i_t R_S \left(\frac{1}{R_S} + g_m + \frac{1}{r_o} \right) = \frac{v_t}{r_o}$$

The output resistance is $(v_t / i_t) || R_D$

$$R_{out} = R_D \parallel \left(R_S \left(\frac{r_o}{R_S} + g_m r_o + 1 \right) \right)$$
$$R_{out} = R_D \parallel \left(r_o + g_m r_o R_S + R_S \right)$$

Approximating the CG *R*_{out}

The exact result is complicated, so let's try to make it simpler:

$$g_m \approx 500 \mu S$$
 $r_o \approx 200 k \Omega$

$$R_{out} \cong R_D \parallel [r_o + g_m r_o R_S + R_S]$$

Assuming the source resistance is less than r_o , $R_{out} \approx R_D \parallel [r_o + g_m r_o R_S] = R_D \parallel [r_o (1 + g_m R_S)]$

CG Two-Port Model

- Function: a current buffer
 - Low Input Impedance
 - High Output Impedance

Common Gate as a "V Amplifier"

Common-Drain Amplifier

Common Drain AC Schematic

CD Voltage Gain

CD Voltage Gain (Cont.)

KCL at source node:

$$\frac{v_{out}}{R_L \parallel r_o} = g_m \left(v_{in} - v_{out} \right)$$
$$\left(\frac{1}{R_L \parallel r_o} + g_m \right) v_{out} = g_m v_{in}$$

Voltage gain:

$$\frac{v_{out}}{v_{in}} = \frac{g_m}{\frac{1}{R_L \parallel r_o} + g_m}$$
$$\frac{v_{out}}{v_{in}} \approx \frac{g_m}{\frac{1}{R_L + g_m}} \approx 1$$

CD Output Resistance

Sum currents at output (source) node:

$$i_x = g_m v_x$$
 $R_{out} = r_o || R_L || \frac{v_x}{i_x}$ $R_{out} \approx \frac{1}{g_m}$

CD Output Resistance (Cont.)

- Function: a voltage buffer
 - High Input Impedance
 - Low Output Impedance

Transistor Amplifiers → Gm/V/I

