EE105
 Microelectronic Devices and Circuits

Prof. Ming C. Wu
wu@eecs.berkeley.edu
511 Sutardja Dai Hall (SDH)

One-Port Models (EECS 16A)

- A terminal pair across which a voltage and associated current are defined

Small-Signal Two-Port Models

- We assume that input port is linear and that the amplifier is unilateral:
- Output depends on input
- But input is independent of output.
- Output port: depends linearly on the current and voltage at the input and output ports
- Unilateral assumption is good as long as "overlap" capacitance is small (MOS)

Two-Port Small-Signal Amplifiers

Current Amplifier

Two-Port Small-Signal Amplifiers

Transconductance Amplifier

Transresistance Amplifier

Input Impedance Zin

- Looks like a Thevenin resistance measurement, but note that the output port has the load resistance attached

$$
Z_{i n}=\left.\frac{v_{x}}{i_{x}}\right|_{\substack{Z_{S} \text { removed, }, Z_{L} \text { attached }}}
$$

Output Impedance $\mathbf{Z}_{\text {out }}$

- Looks like a Thevenin resistance measurement, but note that the input port has the source resistance attached

$$
Z_{\text {out }}=\left.\frac{v_{x}}{i_{x}}\right|_{Z_{\text {Latrancered d }}}
$$

Single-Stage Amplifier Types

Common Source (CS)

Common Gate (CG)

Common Drain (CD)

Common Gate (CG) Amplifier

Common Gate AC Model

Common Gate Small Signal

CG as a Current Amplifier: Find \boldsymbol{A}_{i}

CG Input Resistance

Approximations...

- We have this messy result

$$
\frac{1}{R_{i n}}=\frac{i_{t}}{v_{t}}=\frac{g_{m}+\frac{1}{r_{o}}}{1+\frac{R_{D} \| R_{L}}{r_{o}}}
$$

- But we don't need that much precision. Let's start approximating:

$$
\begin{array}{cl}
g_{m} \gg \frac{1}{r_{o}} & R_{D} \| R_{L} \approx R_{L} \quad \frac{R_{L}}{r_{o}} \approx 0 \\
& R_{i n}=\frac{1}{g_{m}}
\end{array}
$$

CG Output Resistance

CG Output Resistance

Substituting $\boldsymbol{v}_{s}=i_{t} \boldsymbol{R}_{S}$

$$
i_{t} R_{S}\left(\frac{1}{R_{S}}+g_{m}+\frac{1}{r_{o}}\right)=\frac{v_{t}}{r_{o}}
$$

The output resistance is $\left(v_{t} / i_{t}\right) \| R_{D}$

$$
\begin{aligned}
& R_{\text {out }}=R_{D} \|\left(R_{S}\left(\frac{r_{o}^{o}}{R_{S}}+g_{m} r_{o}+1\right)\right) \\
& R_{\text {out }}=R_{D} \|\left(r_{o}+g_{m} r_{o} R_{S}+R_{S}\right)
\end{aligned}
$$

Approximating the CG $R_{\text {out }}$

The exact result is complicated, so let's try to make it simpler:

$$
\begin{aligned}
& g_{m} \approx 500 \mu \mathrm{~S} \quad r_{o} \approx 200 \mathrm{k} \Omega \\
& R_{\text {out }} \cong R_{D} \|\left[r_{o}+g_{m} r_{o} R_{S}+R_{S}\right]
\end{aligned}
$$

Assuming the source resistance is less than $\boldsymbol{r}_{\boldsymbol{o}}$,

$$
R_{\text {out }} \approx R_{D}\left\|\left[r_{o}+g_{m} r_{o} R_{S}\right]=R_{D}\right\|\left[r_{o}\left(1+g_{m} R_{S}\right)\right]
$$

CG Two-Port Model

- Function: a current buffer
- Low Input Impedance
- High Output Impedance

Common Gate as a "V Amplifier"

Common-Drain Amplifier

$$
V_{G S}=V_{T}+\sqrt{\frac{2 I_{D S}}{\mu C_{o x} \frac{W}{L}}} \searrow_{\text {Weak } I_{\mathrm{DS}} \text { dependence }}
$$

Common Drain AC Schematic

CD Voltage Gain

$$
\begin{aligned}
& \frac{v_{\text {out }}}{R_{L} \| r_{o}}=g_{m} v_{\text {gs }} \\
& \frac{v_{\text {out }}}{R_{L} \| r_{o}}=g_{m}\left(v_{\text {in }}-v_{\text {out }}\right)
\end{aligned}
$$

CD Voltage Gain (Cont.)

KCL at source node:

$$
\begin{aligned}
& \frac{v_{\text {out }}}{R_{L} \| r_{o}}=g_{m}\left(v_{\text {in }}-v_{\text {out }}\right) \\
& \left(\frac{1}{R_{L} \| r_{o}}+g_{m}\right) v_{\text {out }}=g_{m} v_{\text {in }}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{g_{m}}{\frac{1}{R_{L} \| r_{o}}+g_{m}} \\
& \frac{v_{\text {out }}}{v_{\text {in }}} \approx \frac{g_{m}}{1 / R_{L}+g_{m}} \approx 1
\end{aligned}
$$

CD Output Resistance

Sum currents at output (source) node:

$$
i_{x}=g_{m} v_{x} \quad R_{\text {out }}=r_{o}\left\|R_{L}\right\| \frac{v_{x}}{i_{x}} \quad R_{\text {out }} \approx \frac{1}{g_{m}}
$$

CD Output Resistance (Cont.)

$$
r_{o} \| R_{L} \ll \frac{1}{g_{m}} \quad \Rightarrow \text { Ignore } r_{o} \| R_{L}
$$

- Function: a voltage buffer
- High Input Impedance
- Low Output Impedance

Transistor Amplifiers \rightarrow Gm/V/I

V-Buffer Source
Follower

